

Effective from Session: 2020-2021									
Course Code	BS211	Title of the Course	IMMUNOLOGY	L	Т	Р	С		
Year	III	Semester	V	3	1	0	4		
Pre-Requisite	10+2 with Biology	Co-requisite							
Course Objectives	The objective of this course is to enable students to understand the basics of Immunology, types of Immune Responses,								
Course Objectives	antigens and antibodie	es, histocompatibility, vac	cines and Immunization						

	Course Outcomes
CO1	Know the history and scope of Immunology.
CO2	Understand the types of Immunity: Passive, Active, Innate and Acquired immunity, Humoral and Cell Mediated Immunity and the cell
	and organs of immune responses and their functions, B & T cells.
CO3	Have basic knowledge of Antigens as haptens, epitopes and Factors influencing immunogenicity, and Antibodies structure, types, production
	and functions of immunoglobulins, Clonal selection theory and Antigen Antibody reactions as Precipitation, Immunoelectrophoresis, Haem- agglutination, RIA and ELISA.
CO4	Comprehend Histocompatibility, structure of MHC class I, II & III antigens and their mode of antigen
	presentation, MHC restriction Complement system: Components, Classical and alternate pathways of complement activation,
	Hypersensitivity, Autoimmunity
CO5	Understand Passive and Active immunization, Types of Vaccines: Inactivated, Attenuated, Recombinant and Subunit Vaccines, Peptide
	and DNA Vaccines.

Unit No.	Title of the Unit	Unit Content of Unit						
1	Basics of Immunology							
2	Immune Responses	Cell and organs of immune responses and their functions, B & T cells.	8	CO-2				
3	Antigens and Antibodies	Antigens: haptens, epitopes and Factors influencing immunogenicity, Antibodies: Structure, types, production and functions of immunoglobulins Clonal selection theory. Antigen Antibody reaction: Precipitation, Immunoelectrophoresis, Haem-agglutination, RIA and ELISA.	8	CO-3				
4	Histocompatibility:	structure of MHC class I, II & III antigens and their mode of antigen presentation, MHC restriction; Complement system: Components, Classical and alternate pathways of complement activation, Hypersensitivity, Autoimmunity.						
5	Vaccines and Immunization	Passive and Active immunization, Types of Vaccines: Inactivated, Attenuated, Recombinant and Sub Unit Vaccines, Peptide and DNA Vaccines	8	CO-5				
Refere	nce Books:							
1.	William, E. Paul (1989) H	Fundamental Immunology, 2nd Edition Raven Press, New York						
2.	Basic Immunology, A.K.	Abbas and A.H. Lichtman, Saunders W.B. Company						
3.	Fundamentals of Immuno	logy, W. Paul, Lippincott Williams and Wilkins						
4.	4. Immunology, W.L. Anderson, Fence Creek Publishing (Blackwell)							
5.	5. Immunology: A Short Course, E. Benjamin, R. Coico and G. Sunshine, Wiley-Leiss Inc							
e-Lea	arning Source:							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
C01	3	1					3	3			
CO2	3	1				1	3	3			
CO3	3	1			1		3	3			
CO4	3	1		3	1		3	3			
CO5	3	1		1	1	1	3	3			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	2020-21				_	_		
Course Code	BS303	Title of the Course	GENETIC ENGEENIRING	L	Т	Р	С	
Year	III	Semester	V	3	1	0	4	
Pre-Requisite	10+2 in	Co-requisite						
1 re-Kequisite	Biology	Co-requisite						
	The course has b	he course has been designed to make students aware of DNA manipulative enzymes and Gene cloning vectors, Screening						
Course Objectives	and selection of	d selection of recombinants, Techniques used as Polymerase chain reaction (PCR), Site directed mutagenes is (SDM),						
	Nucleic acid sequ	lencing and Application	of r-DNA techniques					

	Course Outcomes
CO1	Get proper knowledge about the DNA manipulative enzymes: Restriction enzymes and DNA ligases, and Gene cloning vectors.
CO2	Gain knowledge about In vitro construction of recombinant DNA molecules, passenger and vector DNA, and Transformation
CO3	Learn about screening and selection of recombinant host cells, Gene Libraries, cloning techniques, Expression of cloned DNA
CO4	Learn about the basics of Electrophoretic techniques, Polymerase chain reaction (PCR), Site directed mutagenesis (SDM), Nucleic acid
	sequencing: Blotting techniques.
CO5	Gain knowledge of Application of r-DNA technique in human health, Production of Insulin, Production of recombinant vaccines: Hepatitis B,
	Production of human growth hormone.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
1	DNA manipulative enzymes	Restriction enzymes and DNA ligases, Gene cloning vectors: Plasmids, Bacteriophage and Chimeric plasmids.	08	CO-1			
2	rDNA	<i>In vitro</i> construction of recombinant DNA molecules (pBR332, pUC19), Isolation of passenger and vector DNA, creation of r-DNA, Transformation of r-DNA by different methods.	08	CO-2			
3	Screening and selection of recombinant host cells	Immunological screening and colony hybridization, Gene Libraries: Genomic DNA and cDNA cloning techniques, Expression of cloned DNA in <i>E. coli</i> .	08	CO-3			
4	Techniques	Electrophoretic techniques, Polymerase chain reaction (PCR), Site directed mutagenesis (SDM), Nucleic acid sequencing: Sanger's method, Blotting techniques: Southern, Western and Northern blot.	08	CO-4			
5	Applications	Application of r-DNA technique in human health, Production of Insulin, Production of recombinant vaccines: Hepatitis B, Production of human growth hormone.	08	CO-5			
Refere	nce Books:						
	k, B.R & Pasternak J.J (1994) Mo crobiology, Washington D.C	lecular Biotechnology, Princi[ples and Applications of Recombinant DNA, American S	ociety				
2. Chris	2. Christopler H. (1995) Gene cloning and Manipulating, Cambridge University Press						
3. Nich	3. Nicholl, D.S.T (1994) An Introduction of Genetic Engineering, Cambridge University Press.						
	R.W. and Primrose, S.B. (186) Pr tific Publications	inciples of Gene manipulation, An introduction to genetic engineering (3rd Edition) Bla	ack well				

5. Watson J.D. Hopkins, N.H Roberts, J.W.Steitz J.A and Weiner A.M (1988). Molecular biology of society for Microbiology

6. Lewin b. (1994) Genes VI, New York, Oxford University Press

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	1					2						3	3	3	
CO2	3	1					2						3	3	3	
CO3	3	1					2						3	3	3	
CO4	3	1		2	2		2						3	3	3	
CO5	3	1		1	1	1	3						3	3	3	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020)-21								
Course Code	BS321	Title of the Course	PLANT ANATOMY AND EMBRYOLOGY	L	Т	Р	С		
Year	III	Semester	V	3	1	0	4		
Pre-Requisite	10+2 with	Co-requisite							
r re-kequisite	Biology	Co-requisite							
			te students aware of the scope and importance of plant anato				of		
Course Objectives	angiospermic plant, Importance of studying this paper is highlighted reflecting on the current changing needs of the								
Course Objectives	students by p	roviding latest informati	on of various tissue systems, anomalous secondary growth	in plan	ts, knov	V			
	fertilization, endosperm and embryogeny.								

	Course Outcomes
CO1	Course component will provide an ample understanding on the evolution of concept of organization of shoot and root apex.
CO2	To understand the basic concepts with ability to identify and distinguish various features related to anatomy.
CO3	To understand structure and development in microsporangium and megasporangium, process of microsporogenesis and megasporogenesis
CO4	To evaluate the structural organization of flower and the process of pollination and fertilization.
CO5	To understand the structure and development of dicot and monocot embryos.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Plant Anatomy-I	Root and shoot apical meristems; Simple and complex tissues. Epidermis, cuticle, stomata; Structure of xylem and phloem.	8	CO1
2	Plant Anatomy-II	Structure of dicot and monocot root stem and leaf. Vascular cambium – structure and function, seasonal activity. Secondary growth in root and stem, Wood (heartwood and sapwood).	8	CO2
3	Plant Embryology-I	organization and ultrastructure of mature embryosac		CO3
4	Pollination and seed dispersal	Pollination mechanisms and adaptations; Double fertilization; Seed-structure appendages and dispersal mechanisms		CO4
5	Plant Embryology-II	Endosperm types, structure and functions; Dicot and monocot embryo; Apomixis and polyembryony	8	CO5
Referen	ice Books:			
1. Bhoj	wani, S.S. & Bhatnagar, S	S.P. (2011). Embryology of Angiosperms. Vikas Publication House Pvt. Ltd. New Delhi. 5th ed	ition.	
2. Maus	seth, J.D. (1988). Plant Ar	natomy. The Benjamin/Cummings Publisher, USA.		
e-Lea	rning Source:			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4		
CO	101	102	105	r04	FUS	100	107	1501	1502	1505	1304		
CO1	3	1					1	3					
CO2	3	1					1	3					
CO3	3	1					1	3					
CO4	3	1					1	3					
CO5	3	1					1	3					

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sessio	n: 2020-21			_	_	_	
Course Code	BS322	Title of the Course	COMPARATIVE ANATOMY & DEVELOPMENTAL BIOLOGY	L	Т	Р	С
Year	III	Semester	V	3	1	0	4
Pre-Requisite	10+2 with Biology	Co-requisite					
Course Objectives	structural comparison cleavage and its type	ns of vertebrate systems	nts aware of Ontogenetic and phylogenetic developmental in in major groups of vertebrates, Gametogenesis, Fertilization ization, cell types and cell patterns, stem cells, cell potency,	n and e	early de	velopm	

	Course Outcomes
CO1	The students will learn the comparative anatomy of Skeletal System and Digestive System of animal vertebrate
	types.
CO2	Learn the comparative anatomy of Respiratory System, circulatory and Urinogenital System of animal vertebrate types.
CO3	The students will learn the comparative anatomy of Nervous System and different types of receptors in animal vertebrate types.
CO4	The students will learn about the Gametogenesis, Fertilization, Egg, Cleavage, Stem Cell, Cell lineage, Genomic equivalence.
CO5	Learn Blastulation and Gastrulation, Development of Chick, Extra embryonic membranes of chick and Placentation.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Integumentary System	Derivatives of integument w.r.t. glands and digital tips, Skeletal System: Evolution of visceral arches, Digestive System: Brief account of alimentary canal and digestive glands.	8	CO-1
2	Respiratory System	Gills, lungs and air sacs; Circulatory System: Evolution of heart and aortic arches; Urinogenital System: Succession of kidney, Evolution of urinogenital ducts	8	CO-2
3	Nervous System	Comparative account of brain; Sense Organs: Types of receptors	8	CO-3
4	Gametogenesis	Gametogenesis, Fertilization, Egg: structure and types. Types and patterns of cleavage. Stem Cell and Its potency. Cell lineage, Genomic equivalence	8	CO-4
5	Embryonic development	Process of Blastulation and Gastrulation. Fate Map, Development of Chick up to formation of Primitive streak and mammal (in outline) Extra embryonic membranes of chick. Placentation and types of Placenta.	8	CO-5

Reference Books:

1. Kardong, K.V. (2005) Vertebrates' Comparative Anatomy, Function and Evolution. IV Edition. McGraw-Hill Higher Education.

2. Kent, G.C. and Carr R.K. (2000). Comparative Anatomy of the Vertebrates. IX Edition. The McGraw-Hill Companies.

3. Weichert C.K and William Presch (1970). Elements of Chordate Anatomy, Tata Hilderbrand, M and Gaslow G.E. Analysis of Vertebrate Structure, McGraw Hills John Wiley and Sons.

4. Walter, H.E. and Sayles, L.P; Biology of Vertebrates, Khosla Publishing House. B.

5. Developmental Biology, VIII Edition, Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, USA.

6. Balinsky, B.I. (2008). An introduction to Embryology, International Thomson Computer Press.

7. Kardong, K.V. (2005) Vertebrates' Comparative Anatomy, Function and Evolution. IV Edition. McGraw-Hill Higher Education.

8. Kent, G.C. and Carr R.K. (2000). Comparative Anatomy of the Vertebrates. IX Edition. The McGraw-Hill Companies.

9. Walter, H.E. and Sayles, L.P; Biology of Vertebrates, Khosla Publishing House. Gilbert, S. F. (2006). Developmental Biology, VIII Edition, Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, USA.

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4				
CO CO1	3	1					1	3							
CO2	3	1					1	3							
CO3	3	1					1	3							
CO4	3	1					1	3							
CO5	3	1					1	3							

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Sessio	n: 2020-21			_		Effective from Session: 2020-21											
Course Code	BS323	Title of the Course	INDUSTRIAL& ENVIRONMENTAL BIOTECHNOLOGY	L	Т	Р	С										
Year	III	Semester	V	3	1	0	4										
Pre-Requisite	10+2 with Biology	Co-requisite															
Course Objectives	identification, target	validation, Bioprospecti	nts aware of principle, methodology and application of Drug ng and conservation: importance of biodiversity, free radica table novelty and Detailed, information on patenting biologi	l and a	antioxid												

	Course Outcomes
CO1	Get proper knowledge about Structural and Functional dynamics of microbes for fermentation.
CO2	Gain knowledge about Solid waste treatment and management, Effluent Treatment
CO3	Learn about Isolation, screening, maintenance and improvement of industrial strains
CO4	Learn about the basics of general design of fermenter; media and Downstream Processing
CO5	Have knowledge of products obtained by industrial microbiological fermentation.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Structural and Functional dynamics of microbes	Structural and Functional dynamics of microbes: diversity, activity and growth, community profiling, biosensors, bioreporters, Microchips. Methanogenesis: methonogenic, acetogenic and fermentive bacteria- technical processes and conditions	8	CO-1
2	Solid waste treatment and management, Effluent Treatment	Solid waste treatment and management, Effluent Treatment: Aerobic and anaerobic water treatment processes: activated sludge, trickling filter, fluidized expanded bed reactor, Upflow anaerobic sludge blanket reactor. Bioleaching, Bioremediation, Biodegradable plastics, Biofuels / Biodiesel, Biopesticides, Biofertilizers and Vermitechnology.	8	CO-2
3	General concept and processes in fermentation	General concept and processes in fermentation, Isolation, screening, maintenance and preservation of industrial strains. Concept of strain improvement. Sterilization		CO-3
4	Industrial Fermentation	Media for Industrial Fermentation. General design of fermenter; Scale up concept. Downstream Processing: Filtration, centrifugation, cell disruption, extraction and drying	8	CO-4
5	Products obtained by industrial fermentation	Brief account of the following products obtained by industrial microbiological fermentation: Alcoholic Beverage: Beer, Organic acid: Citric acid, Antibiotic: Penicillin, Amino acids: Glutamic acid, Vitamin: vitamin B12.	8	CO-5
Refere	ence Books:			
1. Env	vironmental Studies by Be	nny Joseph, Tata McGraw Hill, 2005.		
2. Env	vironmental Studies by Dr	. D.L. Manjunath, Pearson Education, 2006.		
3. Prin	ciples of Environmental S	Science and Engineering by P. Venugopal Rao, Prentice Hall of India.		
4. Env	vironmental Science and E	Engineering by Meenakshi, Prentice Hall of India		
5. Mic	robial Biotechnogy (1995) Alexander n. Glazer Hiroshi Nikaido W.H.Freeman and Company		
6. Mol (1994)		iples a nd Applications of Recombinant DNA –Bernaral R. Glick and Jack J. Pastemak ASM Pre	ss. Washing	ton, D.C
	e ei	ogy (1993) Rastogi Publicaions, Meerut.		
	· /	Microbial Technology, 1st Edition, CBS Publishers. Books (P) Ltd.		
9. Cru	ueger W. & Crueger A. (2	000) A text of Industrial Microbiology, 2nd Edition, Panima		
e-Lea	arning Source:			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4				
CO1	3	1				2	1	2	2	1	2				
CO2	3	1					1	2	2	1	3				
CO3	3	1			1	3	1	2	2	1	3				
CO4	3	1					1	2	2	1	3				
CO5	3	1				2	1	2	2	1	3				

Effective from Session: 2020	-21						
Course Code	BS306	Title of the Course	APPLIED BIOTECHNOLOGY	L	Т	Р	С
Year	III	Semester	V	3	1	0	4
Pre-Requisite	10+2 with Biology	Co-requisite					
Course Objectives	identification, ta radical and antio	rget validation, Bio	ke students familiar with principle, methodology and applicat prospecting and conservation: importance of biodiversity, G ce of IPR; Requirement of a patentable novelty and Detailed iodiversity	eneral	l theory	of free	

	Course Outcomes						
CO	1 Get proper knowledge about Genomics and Proteomics and gene expression.						
CO	Gain knowledge about Drug Discovery and Designing: Drug and target identification, target validation.						
CO	3 Learn about Bioprospecting and conservation: importance of biodiversity.						
CO	4 Learn about the basics of Free Radical Biology: General theory of free radical and antioxidants.						
CO	5 Have knowledge of Significance of IPR; Requirement of a patentable novelty and Detailed, information on patenting						
	biological products and biodiversity.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Genomics and Proteomics	Introduction to genomics, Genome annotation, Human genome project and its application, Introduction to Proteomics: Protein expression and its analysis	8	CO1					
2	Drug Discovery and Designing	Drug and target identification, target validation, Molecular docking studies and its Insilco tools e.g. Autodock, GOLD.	8	CO2					
3	Bioprospecting and conservation	Importance of biodiversity. biodiversity informatics, databases in biological materials. International efforts and issues of sustainability.	8	CO3					
4	Free Radical Biology	General theory of free radical and antioxidants. Free radical mediated damage to lipids, proteins and DNA; Natural antioxidants and their applications.	8	CO4					
5	IPR and Patenting	Significance of IPR; Requirement of a patentable novelty; Issues related to IPR protection of software and database; IPR protection of life forms; International convention in IPR; Obtaining patent; Invention step and prior art and state of art procedure; Detailed information on patenting biological products and biodiversity.	8	CO5					
Referen	ce Books:								
1. Envir	ronmental Studies by	Benny Joseph, Tata McGraw Hill, 2005.							
2. Envir	onmental Studies by	Dr. D.L. Manjunath, Pearson Education, 2006.							
3. Princ	3. Principles of Environmental Science and Engineering by P. Venugopal Rao, Prentice Hall of India.								
4. Envir	4. Environmental Science and Engineering by Meenakshi, Prentice Hall of India.								
e-Lear	rning Source:								

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
C01	3	1					1	3	3		3
CO2	3	1					1	3	3		3
CO3	3	1			1	3	1	3			
CO4	3	1					1	3			
CO5	3	1			3	2	1	3		2	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:										
Course Code	BS216	Title of the Course	IMMUNOLOGY LAB	L	Т	Р	С			
Year	III	Semester	V	0	0	6	3			
Pre-Requisite	10+2 with Biology	Co-requisite								
Course Objectives	This course aims to develop the understanding of basics of immunology, types of Blood grouping, cell counts Ouchterlony Double diffusion (ODD) and Separation of serum from blood & amp; precipitation of Immunogle									

	Course Outcomes						
CO1	Analyze Blood grouping						
CO2	Perform and analyze differential counting of WBC and detergent lysis of RBC						
CO3	Perform and analyze Dot Elisa, ELISA.						
CO4	Have knowledge of and can perform Ouchterlony Double diffusion assay.						
CO5	Perform and analyze separation of serum from blood & amp; precipitation of Immunoglobulin.						

Unit No.	Experiment	Content		Mapped CO				
1	Exp-01	Blood grouping	3	CO1				
2	Exp-02	Differential Count of WBC, Detergent lysis of RBC	3	CO2				
3	Exp-03	Dot Elisa, ELISA – Demonstration	3	CO3				
4	Exp-04	Ouchterlony Double diffusion (ODD)	3	CO4				
5	Exp-05	Separation of serum from blood & amp; precipitation of Immunoglobulins	3	CO5				
e-Learning Source:								

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
СО	101	102	105	104	105	100	107	1501	1302	1303	1304
CO1	3	3	1				3		2	3	
CO2	3	3	1				3		2	3	
CO3	3	3	1				3		2	3	
CO4	3	3	1				3		2	3	
CO5	3	3	1				3		2	3	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21										
Course Code	BS308	Title of the Course	GENETIC ENGEENIRING LAB	L	Т	P	С			
Year	III	Semester	V	0	0	6	3			
Pre-Requisite	10+2 with Biology	10+2 with Biology Co-requisite								
Course Objectives	The objective of this of	The objective of this course is to develop the understanding of basics of genetic engineering and PCR.								

	Course Outcomes						
CO1	CO1 The students will be able to isolate genomic DNA from bacteria, plant, and animal tissues.						
CO2	The students will be able to isolate plasmid DNA (E. coli).						
CO3	The students will be able to perform restriction digestion of DNA.						
CO4	The students will be able to perform Agarose Gel Electrophoresis.						
CO5	The students will be able to explain Polymerase Chain Reaction.						

Exp. No.	Title of Experiment	Contact Hrs.	Mapped CO					
Exp-01	Isolation of genomic DNA from bacteria, plant and animal tissue	3	CO-1					
Exp-02	Isolation of plasmid DNA (E. coli)	3	CO-2					
Exp-03	Restriction digestion of DNA	3	CO-3					
Exp-04	Agarose Gel Electrophoresis	3	CO-4					
Exp-05	Demonstration of PCR	3	CO-5					
Reference Books:								
1. Gene Cloning and DNA Analysis: An Introduction, 6th Edition by T. A. Brown								
2. Sambrook J, Russell D (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.								

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO											
CO1	3	3	1				3	3	3	1	3
CO2	3	3	1				3	3	3	1	3
CO3	3	3	1				3	3	3	1	3
CO4	3	3	1				3	3	3	1	3
CO5	3	3	1				3	3	3	1	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020	Effective from Session: 2020-21									
Course Code	BS331	Title of the Course	COMPUTATIONAL SCIENCE AND BIOINFORMATICS		Т	Р	С			
Year	III	Semester	VI	3	1	0	4			
Pre-Requisite	10+2 with Biology	Co-requisite								
Course Objectives	The objective of this course is to develop basic knowledge of computer networking and internet devices, Fundamental concepts of Internet and web technologies, Study biological databases, algorithms and flowchart design, Sequence Alignment, drug designing and understanding the advance applications of Bioinformatics.									

	Course Outcomes							
CO1	Utilizing and configuring computer operating system and application software and understanding its application in life sciences.							
CO2	Understanding the concept of Bioinformatics and biological databases.							
CO3	Derive the basic knowledge of nucleic acid and protein databases.							
CO4	Understanding biological sequence alignment and its methodologies.							
CO5	Knowing the advance applications of bioinformatics in biological sciences							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Computers	Computers: Input and Output Devices; Internet- Web Browsers, URL; Types of network - LAN and WAN. Need of Computers in Biological Sciences, Benefits of computational sciences.						
2	Bioinformatics	Introduction to Bioinformatics, Application of Bioinformatics in life sciences. Biological databases: primary and secondary databases; various types and categories of Biological databases.	8	CO2				
3	Sequence databases	Nucleotide sequence databases: Genbank, EMBL, DDBJ; Protein sequence databases: SWISS PROT, TrEMBL; Structural databases: PDB and MMDB and its applications.	8	CO3				
4	Molecular Visualization & Database similarity search	components; Database similarity search tools: BLAST – algorithm and its version.						
5	Advanced Bioinformatics	Advanced Bioinformatics: Protein Structure prediction studies – Homology Modeling, method and tools; Multiple sequence alignment – concept and implications – MSA in phylogenetics; Application of bioinformatics in Computer Aided drug Design	8	CO5				
Referen	ce Books:							
1.	Andrew Leach; Moleo	cular Modelling: Principles and Applications (2nd Edition), Prentice Hall, 2001, ISBN 13: 97805	82382107					
2.	David W. Mount Bioi	nformatics, Cold Spring Harbor Laboratory Press, ISBN 0-87969-608-7						
3.	D.E. Krane and M.L.	Raymer Fundamental concepts of Bioinformatics, Pearson Education ISBN 81-297-0044-1						
4. A.D. Baxevanis et al., Current Protocols in Bioinformatics, Wiley Publishers								
e-Lear	rning Source:							
DNA se	equence analysis metho	ds-I Dr. Vikash Kumar Dubey http://nptel.ac.in/courses/102103017/pdf/lecture%2029.pdf						
DNA S	equence Analysis Meth	ods-II Dr. Vikash Kumar Dubey http://nptel.ac.in/courses/102103017/pdf/lecture%2030.pdf						
Compu	tational chemistry in dr	ug discovery. European Bioinformatics Institute - EMBL-EBIhttps://www.youtube.com/watch?v	=9DESulCW	VbRQ.				

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO	101	102	105	101	105	100	107	1501	1502	1505	1501
CO1	3	1					1	3	2	1	
CO2	3	1					1	3	2	1	
CO3	3	1					1	3	2	1	
CO4	3	1					1	3	2	1	
CO5	3	1					1	3	2	1	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-2021									
Course Code	BS332	Title of the Course	PLANT AND ANIMAL BIOTECHNOLOGY	L	Т	Р	С		
Year	III	Semester	VI	3	1	0	4		
Pre-Requisite	10+2 with Biology	Co-requisite							
Course Objectives	applications in plant g	The objective of this course is to make students aware of basic plant and animal biotechnology techniques and their applications in plant growth and development and cell culture, and large scale production of natural products from plant source, Production of transgenics and expression of Cloned proteins and vaccines.							

Course	Outcomes							
CO1	Get proper knowledge about the history and Scope of Animal Tissue Culture, Culture Media, Simulating natural conditions for growth of							
	animal cells.							
CO2	Gain knowledge about Primary Culture, cell lines and Secondary Culture, transformed animal cells and continuous cell lines. Monolayer							
	formation, Synchronization							
CO3	Learn about transfection of animal cell lines, Selectable makers and Transplantation of Cultural Cells. Microinjection, In vitro fertilization and							
	Stem cell technology.							
CO4	The students will get proper knowledge about the media preparation for In-vitro propagation of plants and different aseptic techniques used							
	during preparation.							
CO5	The students learn the role of techniques haploid plant production and its significance.							

No.	Title of the Unit	Content of Unit	Conta ct Hrs.	Mapped CO			
1	Aseptic Techniques for Callus and suspension culture	Aseptic Techniques, Nutrient media, and use of growth regulators (Auxins, Cytokininis and Gibberellins). Callus and suspension	8	CO-1			
2	Haploid plant production	Haploid plant production: microspore and ovule culture, Organ Culture and their applications, Somatic Embryogenesis: Techniques and applications. Protoplast Culture, somatic hybridization, methods of protoplast fusion: chemical and electro fusion, practical application of somatic hybridization	8	CO-2			
3	Role of tissue culture & Techniques of transformation	e culture & Role of tissue culture in agriculture, horticulture and forestry, Transgenic plants, Technique of transformation: Agrobacteriummediated and physical methods (Microprojectile 8					
4	Primary Culture	Primary Culture: Cell lines, and cloning, isolation and mechanical disaggregation of tissue, enzyme. Secondary Culture: transformed animal cells and continuous cell lines. Monolayer formation, Synchronization	8	CO-4			
5	Expression of Cloned proteins in animal cell	Expression of Cloned proteins in animal cell: Expression vector, over production and downstream processing of the expressed proteins, Production of Vaccines in animal Cells. Production and Applications of monoclonal antibodies, HAT selection	8	CO-5			
Refere	ence Books:						
1.	Ravishankar G.A and Venl	xataraman L.V(1997) Biotechnology applications of Plant Tissue & cell culture. Oxford & IBH Publishing co	o., Pvt Ltd.				
2.	Bhan (1998) tissue Culture	, Mittal Publications, New Delhi					
3.	H. S. Chawla "Plant Bioted	chnology: A Practical Approach"					
4. Chrispeel M.J. and Sdava D.E. (1994 Plants, Genes and agriculture, Jones and Barlett Publishers, Boston.							
5.	Lydiane Kyte & John Kley	n (1996) Plants from test tubes. An introduction to Micropropogation (3rd Edition) timber Press, Partland					
e-Lea	arning Source:						

	Course Art	Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	1					1	2	1	1	3
CO2	3	1					1	2	1	1	
CO3	3	1					1	2	1	1	3
CO4	3	1				1	1	2	1	1	3
CO5	3	1				1	1	2	1	1	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21										
Course Code	BS314	14Title of the CourseBIOINFORMATICS LABLTP								
Year	III	Semester VI 0 0 6 3								
Pre-Requisite	10+2 with Biology	2 with Biology Co-requisite								
Course Objectives	sequence comparison	using DOTPLOT, Pai (ClustalX & Treeview)	idents aware of sequence databases, Retrieving se ir wise Sequence Alignment, FASTA & BLAST), Protein Structure Visualization (RASMOL, Swi	searc	h, Mult	iple				

	Course Outcomes								
CO1	Learn about types of sequence databases (Nucleotide & Protein)								
CO2	now about Retrieving sequences from the databases and simple sequence comparison using DOTPLOT								
CO3	Have knowledge of Pair wise Sequence Alignment (NW and SW approach), FASTA & BLAST search and Multiple Sequence Alignment (ClustalX & Treeview)								
CO4	Have basic knowledge of Protein Structure Visualization (RASMOL, Swiss-PDB Viewer)								
CO5	Have basic knowledge about Gene Finding tools (Grail or Genscan)								

Exp. No.	Title of Experiment	Contact Hrs.	Mapped CO								
Exp-01	Introduction to types of sequence databases (Nucleotide & Protein) 3 CO1										
Exp-02											
Exp-03	Simple sequence comparison using DOTPLOT 3 CO2										
Exp-04	xp-04Pair wise Sequence Alignment (NW and SW approach)3CO3										
Exp-05											
Exp-06	p-06Multiple Sequence Alignment (ClustalX & Treeview)3CO3										
Exp-07	xp-07Protein Structure Visualization (RASMOL, Swiss-PDB Viewer).3CO4										
Exp-08	Exp-08Gene Finding tools (Grail or Genscan)3CO5										
Reference Bo	Reference Books:										
3. Gene Clor	3. Gene Cloning and DNA Analysis: An Introduction, 6th Edition by T. A. Brown										
4. Sambrook											
e-Learning	e-Learning Source:										

			С	ourse Articu	lation Matrix	: (Mapping	of COs with l	POs and PSO	s)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1			1	3	3	1	1	1
CO2	3	3	1			1	3	3	2	1	3
CO3	3	3	1			1	3	3	2	1	3
CO4	3	3	1			1	3	3	2	1	3
CO5	3	3	1			1	3	3	2	1	3

Name & Sign of Program Coordinator	Sign & Seal of HoD	

Effective from Session: 2020-21										
Course Code	BS315	B15 Title of the Course PROJECT & TRAINING								
Year	III	Semester VI 0 0 0 4								
Pre-Requisite	10+2 with Biology	H+2 with Biology Co-requisite								
Course Objectives	The main objective	The main objective of this course is to acquaint the student with various techniques used in contemporary								
Course Objectives	research in biotechnol	ogy or allied areas.								

	Course Outcomes						
CO1	To be able to define a research problem.						
CO2	To conduct bench work.						
CO3	To prepare the research report and its oral demonstrations.						
CO4	To coorealate theoretical knowledge of techniques with practical application						
CO5	To promote lifelong learning						

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	
CO1	3	2		1	1		3			3		
CO2	3	3	2	1	3		3			3	3	
CO3	XO3 3 3 2 1 3 3 3 3											
CO4	D4 3 3 3 3 3											
CO5												
			1- Low Cor	relation; 2- N	Moderate Co	rrelation; 3-	Substantial (Correlation				

• Students are allocated a dissertation topic individually under the supervision of faculty of the department.

• The dissertation must be similar to the thesis style and encompass:

(i) Introduction / Rationale and Review of Literature

(ii) Materials and Methods,

(iii) Results,

(iv) Discussion and (v) Bibliography.

The dissertation should be submitted in type-written, bound form to the department for record.

Effective from Session: 2020-21										
Course Code	BS316	316Title of the CourseEDUCATIONAL TOURLTP								
Year	III	Semester VI 0 0 0 2								
Pre-Requisite	10+2 with Biology	0+2 with Biology Co-requisite								
Course Objectives	acquaint the student	with state of the art te	de the students an exposure to various research acti chnique/instruments used in various research insti a report after completion of the tour.							

	Course Outcomes						
CO1	Develop understanding of state of the art techniques/instruments used in various reputed research						
	institutions. and industries						
CO2	Take part in Group discussion and learn Team work.						
CO3	Enhance communication and social skills by communication with peers.						
CO4	Student shall be able to plan and improve the Technical Report writing skills						
CO5	Have created Interest to pursue lifelong learning.						

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	1	1				3	1		3	3
CO2	3	2	2	1			3				3
CO3	3	2	2	1			3				3
CO4	3	2					3				3
CO5	3			1		2	3				3

Name & Sign of Program Coordinator	Sign & Seal of HoD